Using empirical and mechanistic models to assess global warming threats to leatherback sea turtles

Peter N. Dudley*, Warren P. Porter

Department of Zoology, University of Wisconsin, 250 North Mills Street, Madison 53706, USA

ABSTRACT: Global warming may pose a greater risk to species with unique thermal requirements during each life stage than species with a similar thermal requirement throughout all life stages. The risk to the former is higher because their unique thermal ranges may become geographically or temporally discontiguous. Additionally, modeling global warming’s effects on these species is challenging due to their multiple thermal requirements. We explore these issues using leatherback sea turtles Dermochelys coriacea as a study species. The gigantothermy of adult leatherbacks and their subterranean egg incubation means global warming will differentially affect adults and eggs. To assess the unique thermal requirements in each life stage we used 2 distinct modeling approaches: (1) a mechanistic biophysical/physiological model to assess threats to adult leatherbacks, and (2) Bayesian regression with a mechanistic microclimate model to assess threats to leatherback eggs. We combined these models with a comprehensive literature search and a global climate model to establish the future thermal threats to the egg and adult leatherback life stages at 3 major rookeries (Gabon, French Guiana, and West Papua). We found that adult internesting and nesting core temperatures will not rise above the critical thermal maximum; however, at 2 of the 3 sites, adult core body temperatures will rise above the point where hatchlings experience uncoordinated movement. We also found that increased temperatures will greatly reduce success rates of egg clutches in West Papua and Gabon by the end of the 21st century.

KEY WORDS: Bayesian · Global warming · Hatchling success · Leatherback · Marine turtles · Modeling · Physiology · Thermal tolerance

INTRODUCTION

Global warming poses a special risk to organisms with unique thermal requirements in each life stage because these required thermal conditions may become geographically or temporally disconnected. Modeling each life stage of a species under projected future climates may reveal during which part of their life cycle that species is most at risk. Depending on data accessibility and understanding of ecological processes and physiological mechanisms, different model classes may be more appropriate for assessing climatic threat to a species in different life stages. This study demonstrates the use of a mechanistic microclimate model combined with a biophysical/physiological model or an empirical model to assess global warming threats to adult leatherback sea turtles and their eggs, respectively. Leatherback sea turtles Dermochelys coriacea (Vandelli 1761) are the last remaining member of the 90 million year old family Dermochelyidae (Weems 1988). Tragically, they are critically endangered (Martinez 2011). Fishing bycatch (Spotila et al. 1996, Eckert 1997, Lewison et al. 2004), egg poaching (Kaplan 2005, Tapilatu & Tiwari 2007, Tomillo et al. 2008), beach development (Chan et al. 2007, Hernández et al. 2007, Mazaris et al. 2009, Witherington et al. 2011), and pollution (Barreiros & Barcelos 2001,

Adult leatherbacks are especially vulnerable to global warming because they are gigantotherms. Gigantotherms are poikilotherms whose activity and large body size elevates their body temperature considerably above ambient (by as much as 18°C for leatherbacks; Paladino et al. 1990, Bostrom & Jones 2007). This gigantothermy allows leatherbacks to forage in cold northern waters (e.g. offshore of Nova Scotia, Canada), but also means that they can only persist in waters which can adequately cool them. Global warming could also threaten leatherback hatchlings as their success (percent that hatch and escape the nest) may also be temperature-dependent (Spotila 2004). Some studies found no relation between temperature and leatherback hatching success (Wallace et al. 2004), but, like those of other reptiles, a leatherback embryo’s growth and water uptake may be negatively correlated with temperature (Packard et al. 1987, Spotila & Zimmerman 1994, Lin et al. 2005). Thus, a large increase in global temperatures may make tropical waters inhospitably warm for adults and reduce hatching success.

While 2 studies have used empirical models to predict leatherback populations and nesting sites under global warming conditions (Saba et al. 2012, Pike 2013), ours is the first study to use a mechanistic model to predict actual leatherback core temperatures under global warming conditions. To predict these temperatures we combined morphological and behavioral data from the literature, a global climate model (GCM), and a novel transient and steady state biophysical/physiological model using an ‘effective insulating layer thickness’ (EILT) to calculate adult core body temperatures during nesting (while on land for oviposition) and internesting (time in water between nestings). The literature and GCM data were also the inputs for a meta-analysis using Bayesian regression to determine if hatching success negatively correlates with temperature. We then estimated the most credible future hatching success rates. With these methods, this study attempted to answer the following questions: (1) How will temperature increases change adult core temperatures during nesting and internesting at prominent leatherback nesting sites? (2) Will core temperature changes cause leatherback ranges to diverge from the equator? (3) How will temperature increases affect hatching success rates?

Our study only examined the effect of global warming on leatherback adult core temperatures and hatching success. For an overview of the many threats from global warming (increased air and ocean temperature, sea level rise, skewed sex ratios, reduced hatching success, ocean acidification and changing large-scale ocean-atmosphere patterns) to all sea turtle species, see the several comprehensive reviews (Hawkes et al. 2009, Poloczanska et al. 2009, Hamann et al. 2013). In addition there are many articles covering proposed or implemented sea turtle management strategies under global warming: a general review (Fuentes et al. 2012), threat assessments (Garcon & Grech 2010, Donlan et al. 2010, Fuentes & Cinner 2010, Fuentes et al. 2011), regional management units (Fuentes et al. 2013), climate-smart practices (Hansen et al. 2010), and marine protected areas (Hooker et al. 2011).

**MATERIALS AND METHODS**

**Literature search: adult thermal effects**

To aggregate current leatherback thermal and range data, we searched Web of Science using a combination of synonyms for leatherback, distribution, and thermal tolerance. Of the initial 131 results, we eliminated 97 articles based on title or abstract. Usable thermal range data was in 14 of the remaining articles. These 14 papers used 1 of 3 methods to measure ambient water temperatures around leatherbacks. Three studies matched fisherman and public leatherback sightings in their northern foraging waters (henceforth ‘foraging leatherbacks’) with water temperature at the sighting location (McMahon & Hays 2006, James et al. 2006b, 2007). Two articles had trackers measuring water temperature on foraging leatherbacks and 1 had water temperatures from bycatch incidents (Goff & Lien 1988, James & Mrosovsky 2004, James et al. 2006a). Nine articles had trackers on internesting leatherbacks (Southwood et al. 1999, 2005, James et al. 2006a, Sherrill-Mix et al. 2007, Shillinger et al. 2008, Fossette et al. 2009, López-Mendilaharsu et al. 2009, Casey et al. 2010, Witt et al. 2011). We calculated a weighted average and weighted standard deviation for these 3 sets of temperature data. In addition to measuring ambient temperatures, 3 studies measured internal body temperatures with deep cloaca probes or ingested data loggers. The cloaca probe study was in foraging waters (James & Mrosovsky 2004) and the 2 data logger studies were during internesting (South-
wood et al. 2005, Casey et al. 2010). We calculated a weighted average body temperature from the 2 internesting studies.


**Biophysical/physiological model**

The biophysical/physiological model had 2 stages: a steady state stage when the leatherback is in water and a transient stage when the leatherback is nesting (outlined in Fig. 1). Both stages used an ellipsoid (the three-dimensional (3D) analogue of an ellipse) shape to approximate the leatherback. The ratios of the ellipsoid semi-principal axes corresponded to the ratio of leatherback body dimensions measured from images. We used 9 leatherback images where the perspective allowed us to measure a ratio without distortions (Fig. 2; source information for the images is given in the Appendix). As leatherbacks are close to neutrally buoyant, we set the turtle tissue to the

---

**Fig. 1. Dermochelys coriacea.** A schematic diagram of the physiological model. A steady state model uses core temperatures, water temperatures, field metabolic rates (FMR), an ellipsoidal geometry, and conduction and convection constants to establish a minimum effective insulating layer thickness. The insulating layer thickness, the abiotic conditions, the same ellipsoidal geometry, the metabolic rates for different nesting phases (i.e. crawling, covering, laying, etc.) and the conduction and convection coefficients are the inputs for a transient, nesting leatherback model. We use both of these models to predict current and future core body temperatures during both terrestrial and marine parts of the nesting season.

---

**Fig. 2. Dermochelys coriacea.** We approximated the leatherback’s body geometry as an ellipsoid. We based the ellipsoid axes ratios on ratios taken from 9 leatherback photos (2 examples shown). The leatherback’s weight sets the absolute size of the axes. Photo credits: top, Shuva Rahim (date unknown); bottom, National Park Service (2013).
same density as seawater, and set the ellipsoid volume so its mass matched the leatherback's mass. We used 2 turtle sizes (curved carapace length (CCL) 125 and 172 cm, mass 197 and 593 kg) based on the size range James et al. (2007) documented. We divided the ellipsoid into 2 regions: the first was a core region with uniform temperature, and the second was an insulating layer.

The first stage (steady state internesting model) used the current average temperature difference (calculated above) between internesting water and the leatherback core to calculate an 'effective insulating layer thickness' (EILT); a fat layer thickness that would result in the ellipsoid leatherback having the same temperature difference as real leatherbacks. Thus, this EILT uses a single number to represent a leatherback's total insulating capabilities, including flippers, soft head and neck skin, and fat insulation around the body cavity. The EILT is not meant to accurately predict the fat layer thickness in a leatherback, but rather to represent a leatherback's insulating capabilities. We set the size, ambient temperature and core temperature in our steady state model to the averages from the 2 studies reporting core and ambient temperatures. We then solved for an EILT. We scaled this thickness to the 2 leatherback sizes in our model. McMahon & Hays (2006) showed leatherbacks behaviorally cool themselves during their internesting period. Thus, we assumed that this effective insulating layer thickness represented the minimum achievable physiological insulation of a leatherback.

In the second stage (transient nesting model), we used the same core volume and effective insulating layer as the steady state internesting model (Fig. 3). The transient nesting model divided the turtle's surface into 2 regions. One region was in contact with the ground and transferred heat by conduction. This region was either 40 or 50% of the leatherback's surface area and matched the portion of the leatherback's surface in contact with the ground during different nesting phases (i.e. crawling versus laying). The other region transferred heat by both convection and thermal infrared long wavelength radiation. As most leatherbacks nest at night, we did not include solar heating. The model did include metabolic heat and respiratory evaporative heat loss. We calculated respiratory heat loss using the turtle's tidal volume and respiration rate from the literature. We assumed the lungs’ interior surfaces were free water surfaces. The heterogeneous core body volume had the thermal characteristics of animal tissue. We assigned the insulating layer the thermal properties of blubber.

We used the Nusselt-Reynolds relation coefficients of a sphere to set the convection coefficient. The characteristic length of the ellipsoid was the cube root of the volume (Mitchell 1976). We calculated the sky temperature from the Swinbank relation (Swinbank 1963). Table 1 presents these and other model parameters.

To compare current and future leatherbacks we selected 3 locations with sizable leatherback nesting populations (Gabon, French Guiana, and West Papua). These 3 locations represent the 3 largest nesting populations in the East Atlantic, West Atlantic, and East Pacific, respectively. We used GCM data from the Geophysical Fluid Dynamics Laboratory–Earth Systems Model with generalized ocean layer dynamics (GFDL-ESM2G) (Dunne et al.
Table 1. *Dermochelys coriacea*. The data used to calculate the steady state (internesting) and/or transient (nesting) model, in addition to present and future climatic data for the 3 locations (not shown here). Values with multiple citations indicate an average from several sources weighted by number of measurements. EILT: effective insulating layer thickness

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>197.4–593.2</td>
<td>kg</td>
<td>James et al. (2007)</td>
</tr>
<tr>
<td>Tissue density</td>
<td>1025</td>
<td>kg m⁻³</td>
<td>Same as sea water</td>
</tr>
<tr>
<td>Length to width to height ratio</td>
<td>1.000:0.830:0.425</td>
<td></td>
<td>Various images</td>
</tr>
<tr>
<td>Specific heat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissue</td>
<td>3750</td>
<td>J kg⁻¹ K⁻¹</td>
<td>Bostrom &amp; Jones (2007)</td>
</tr>
<tr>
<td>Fat</td>
<td>1880</td>
<td>J kg⁻¹ K⁻¹</td>
<td>Minard (1970)</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crawling</td>
<td>180</td>
<td>s</td>
<td>Carr &amp; Ogren (1959)</td>
</tr>
<tr>
<td>Digging</td>
<td>1320</td>
<td>s</td>
<td>Carr &amp; Ogren (1959)</td>
</tr>
<tr>
<td>Laying</td>
<td>900</td>
<td>s</td>
<td>Carr &amp; Ogren (1959)</td>
</tr>
<tr>
<td>Covering</td>
<td>2700</td>
<td>s</td>
<td>Carr &amp; Ogren (1959)</td>
</tr>
<tr>
<td>Crawling</td>
<td>480</td>
<td>s</td>
<td>Carr &amp; Ogren (1959)</td>
</tr>
<tr>
<td>Total</td>
<td>5580</td>
<td>s</td>
<td>Carr &amp; Ogren (1959)</td>
</tr>
<tr>
<td>Metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crawling</td>
<td>1.045</td>
<td>W kg⁻¹</td>
<td>Paladino et al. (1990, 1996)</td>
</tr>
<tr>
<td>Digging or covering</td>
<td>1.381</td>
<td>W kg⁻¹</td>
<td>Paladino et al. (1990)</td>
</tr>
<tr>
<td>Laying</td>
<td>0.148</td>
<td>W kg⁻¹</td>
<td>Lutcavage et al. (1990)</td>
</tr>
<tr>
<td>Swimming</td>
<td>0.395</td>
<td>W kg⁻¹</td>
<td>Wallace et al. (2005)</td>
</tr>
<tr>
<td>Ventilation frequency</td>
<td></td>
<td>s⁻¹</td>
<td>Paladino et al. (1996)</td>
</tr>
<tr>
<td>Active</td>
<td>0.083</td>
<td>s⁻¹</td>
<td>Paladino et al. (1996)</td>
</tr>
<tr>
<td>Laying</td>
<td>0.065</td>
<td>s⁻¹</td>
<td>Paladino et al. (1996)</td>
</tr>
<tr>
<td>Tidal volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>0.00412–0.01240</td>
<td>m³</td>
<td>Paladino et al. (1996)</td>
</tr>
<tr>
<td>Laying</td>
<td>0.00150–0.00450</td>
<td>m³</td>
<td>Paladino et al. (1996)</td>
</tr>
<tr>
<td>EILT</td>
<td>0.0087–0.0127</td>
<td>m</td>
<td>First stage of model</td>
</tr>
<tr>
<td>Fat conductance</td>
<td>0.25</td>
<td>W K⁻¹ m⁻¹</td>
<td>Bostrom et al. (2010)</td>
</tr>
<tr>
<td>Swim speed</td>
<td>0.7</td>
<td>m s⁻¹</td>
<td>Eckert (2002)</td>
</tr>
</tbody>
</table>

2012). We compared 2 emission scenarios. The first was Representative Concentration Pathway 8.5 (RCP8.5) (Riahi et al. 2007) and the second was RCP2.6 (Vuuren et al. 2007). RCP8.5 is the ‘business as usual’ pathway while RCP2.6 is a mitigation scenario aimed at limiting the global increase in temperature to 2°C. The scenarios result in a radiative forcing increase of 8.5 W m⁻² and 2.6 W m⁻² by 2100 (the standard end year for climate projections). In each of the 3 locations, we extracted monthly minimum, maximum, and mean air temperatures; water temperatures; relative humidities; and average wind speeds for the 2100 nesting period (Gabon—November to February, French Guiana—March to August, West Papua—May to September). Local weather stations provided current temperature data; all other current climate data were the GCM simulation conditions in the year 2010.

As leatherbacks come ashore, their movement digs down through several centimeters of sand. Thus, to find the sand temperature the leatherback plastron is in contact with, we used the Niche Mapper™ microclimate model (Porter et al. 1973, Porter & Mitchell 2006) to calculate the sand temperature 15 cm below the surface.

Table 2 presents the inputs for this Niche Mapper™ simulation. The calculated results from Niche Mapper™ were in good agreement (average difference 2.2%) with 2 studies which measured beach temperatures at leatherback nesting sites (Hilberman et al. 2003, Santidrián Tomillo et al. 2009).

**Literature search: incubation thermal effects**

This Web of Science search combined terms for leatherbacks, eggs or hatchlings, and hatching success. Removing studies based on title and abstract reduced the initial 80 articles to 32. Selecting only papers with in-ground or in-nest temperatures and which measured hatching success reduced the number to 4 papers with a total of 530 nests (Tapilatu & Tiwari 2007, Houghton et al. 2007, Santidrián Tomillo et al. 2009, Patino-Martinez et al. 2012). Two of these studies used in-nest temperature measurements and 2 used probes at nest depths. Using the known metabolic heat...
which a set quantity of successful eggs produces we scaled the in-clutch temperatures to remove the metabolic-sourced temperature increase (Patino-Martinez et al. 2012).

**Bayesian regression**

In order to calculate the 2100 credible hatchling success rate distributions, i.e. those future values of success that are the most likely and therefore lay inside the 95% HDI (highest density interval), we conducted a Bayesian regression on the hatching success data. We weighted each data point by the number of nests it represented. The model (i.e. the likelihood function) was a logistic function (Eq. 1) about which the data was normally distributed (Eq. 2) (Fig. 4). This model had 4 parameters: the 3 coefficients that describe the shape of the logistic function and the normal distribution precision (t) (inverse of variance); and 1 variable (ground temperature):

\[
y_i(T_i) = \beta_0 \left(1 - \frac{1}{1 + e^{-\beta_1(T_i - T_0)}}\right)
\]  

\[
z_i(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y - \mu)^2}{2}}
\]

where \(z_i\) is the probability of a data point occurring at \(y\), \(y_i\) is the average of the success at a given temperature \(T_i\), \(T_i\) is a set sand temperature at nest depth, \(t\) is the precision of the normal distribution, \(\beta_0\) is a scaling coefficient of the logistic equation, \(\beta_1\) is a shape coefficient of the logistic equation, and \(\beta_2\) is a displacement coefficient of the logistic equation.

All priors were noncommittal. The prior on \(b_0\) was a uniform distribution from 0.001 to 1.0. The prior on \(b_1\) was a uniform distribution from \(1 \times 10^{-6}\) to \(1 \times 10^6\). The prior on \(b_2\) was a uniform distribution from 0 to 100. The precision prior was a gamma distribution with shape and scale parameter set to 0.001. There were 3 MCMC (Markov chain Monte Carlo) runs with 500 burn-in steps and 500 adaption steps. We saved a total of 100000 non-thinned points from the chain.

In order to calculate future temperatures the nests will experience we again used the microclimate model in Niche Mapper™. We calculated the average belowground temperature at a depth of 0.5 m, i.e. similar to the depth of a typical leatherback nest (Chan & Liew 1995, Godfrey & Barreto 1996) for both shaded and exposed nests during the nesting season plus 60 d (the incubation time).

**RESULTS**

**Adult thermal effects**

The average water temperature was 26.4 ± 1.6°C for internesting adults and 13 ± 4°C for foraging adults: the average foraging sighting temperature was 16 ± 2°C (Fig. 5). We expected the sighting temperature to be warmer than the tracking temperature for any region because the tracking temperatures include colder waters that the leatherback encounters during dives. Combining this data with RCP8.5 GCM data we find that by 2100, the North Atlantic 16°C isotherm (the location with the most foraging leatherback sightings) will likely move approx. 3.5° north along the western Atlantic coast and 4.5° along the eastern Atlantic coast (Fig. 6).

The 2 studies that measured internesting external and internal body temperatures showed that leatherbacks maintain their body temperature 2.2 ± 1.1°C above ambient. Inputting the internesting temperature difference into our biophysical/physiological model, we found that under RCP8.5 West Papua leatherbacks experienced the largest increase in internesting core temperatures (3.4°C). Gabon experienced the smallest increase between current and future internesting core temperatures with an increase of 1.8°C. Under RCP2.6 there was a small decrease in core temperature between Gabon and West Papua leatherbacks and a slight increase in core temperature in French Guiana leatherbacks (Table 3).
The typical results from the transient model showed the core body temperature increased during all stages except oviposition (e.g. Fig 7). During oviposition, a leatherback reduces its metabolic rate by an order of magnitude when compared to crawling and covering/digging (Lutcavage et al. 1990, Paladino et al. 1990, 1996), and internesting (Southwood et al. 1999, 2005, James et al. 2006a, Sherrill-Mix et al. 2007, Shillinger et al. 2008, Fossette et al. 2009, López-Mendilaharsu et al. 2009, Casey et al. 2010, Witt et al. 2011) into averages weighted by number of turtles counted or tagged.

At the point of oviposition we calculated that the turtle had heated to between 1.4 to 3.1°C above water temperature, which is in agreement with measurements made by Mrosovsky & Pritchard (1971) (2.3 to 3.0°C; no CCLs given). The model using RCP8.5 predicted that by 2100 all leatherbacks will experience most of their increase in core body temperature while in the water. Almost all of the French Guiana leatherbacks’ core temperature increase was predicted to happen during the internesting period. West Papua leatherbacks were predicted to experience a substantial temperature increase during nesting—but still less than during internesting (Fig. 8). Under RCP8.5 the model predicted that larger leatherback in West Papua will have the highest core temperature (37.2°C) while the smaller leatherback at the same location will have the greatest increase in core temperature (4.6°C) over the present day (Table 4).

In the model, none of the future internesting or nesting body temperatures were above the presumed leatherback critical thermal maximum (CTM) (40°C) (Spotila et al. 1997). This result, however, is not a guarantee of persistence in these regions (see Discussion).
Incubation thermal effects

The Bayesian regression achieved a good fit with a narrow 95% HDI (Fig. 9). The future posterior distributions (Figs. 10 & 11) for projected belowground temperatures showed some consistent trends. Shaded nests always had higher credible seasonal average success values than exposed nests. There was generally a small difference between present and RCP2.6 credible seasonal average success values. The exception to this finding was the exposed Gabon nests. For exposed nests under RCP8.5 in all 3 locations, zero was a credible seasonal average success value. In general, nests in Gabon and West Papua were more at risk of having low credible seasonal average success values.

Table 4. *Dermochelys coriacea*. The maximum present nesting core body temperatures and 2100 nesting core body temperatures of 2 sizes (curved carapace length, CCL) of leatherback sea turtles at 3 locations under 2 different emissions scenarios

<table>
<thead>
<tr>
<th>Location</th>
<th>CCL (cm)</th>
<th>Present 2100</th>
<th>2100 RCP2.6</th>
<th>2100 RCP8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabon</td>
<td>172</td>
<td>33.2</td>
<td>31.1</td>
<td>35.4</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>31.8</td>
<td>31.9</td>
<td>34.2</td>
</tr>
<tr>
<td>West Papua</td>
<td>172</td>
<td>33.1</td>
<td>33.4</td>
<td>37.2</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>31.3</td>
<td>31.9</td>
<td>35.9</td>
</tr>
<tr>
<td>French Guiana</td>
<td>172</td>
<td>30.4</td>
<td>31.2</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>29.3</td>
<td>30.1</td>
<td>32.4</td>
</tr>
</tbody>
</table>

Fig. 7. *Dermochelys coriacea*. An example of a core temperature profile for a 172 cm curved carapace length (CCL) Gabon leatherback under emission scenario RCP8.5. The vertical lines separate different phases of the nesting process. These functions are exponential despite appearing linear. They appear linear owing to the large thermal inertia of the leatherback and the short time spent on land.

Fig. 8. *Dermochelys coriacea*. The increase in leatherback body temperature during the nesting process between the present and the year 2100 under emission scenario RCP8.5. The vertical lines separate different phases of the nesting process.

Fig. 9. *Dermochelys coriacea*. A graph of the raw data from 4 studies (Tapilatu & Tiwari 2007, Houghton et al. 2007, Santidrián Tomillo et al. 2009, Patino-Martinez et al. 2012) with 95% HDIs (highest density interval) overlaid at several temperature values. The hash marks in the middle of the HDI vertical bars are the most credible success value for the given temperature. For each given temperature, 95% of the credibility lies within the vertical line. Data is weighted by number of nests, thus certain data points have more weight in the regression than others.

seasonal average success values than exposed nests. There was generally a small difference between present and RCP2.6 credible seasonal average success values. The exception to this finding was the exposed Gabon nests. For exposed nests under RCP8.5 in all 3 locations, zero was a credible seasonal average success value. In general, nests in Gabon and West Papua were more at risk of having low credible seasonal average success values.
DISCUSSION

Adult thermal effects

The adult leatherback biophysical/physiological models suggest it is possible but unlikely that thermal distress will make the equatorial region inaccessible. The maximum steady state core temperature the model predicted was 36.0°C in West Papua (below the presumed CTM of 40°C). This adult CTM value is, however, only an estimate and researchers have not explicitly measured it. Additionally, while optimum temperature does correlate with CTM, exceeding other lower temperature limits, such as pejus range (turning worse, progressively deleterious) or the critical thermal minimum, does have a negative effect on fitness (Huey et al. 2012). Therefore, results near the assumed CTM should raise concern. West Papua and Gabon under scenario RCP8.5 were also of concern because temperatures were above the 33.6°C threshold where hatchlings begin to experience uncoordinated movement (Drake & Spotila 2002). If adults do not have a higher thermal tolerance than hatchlings, they will likely not nest in these regions.

Overheating during nesting is a greater concern than overheating while internesting. The increased metabolic heat as well as the reduced convective cooling puts leatherbacks at additional thermal risk. Our model under scenario RCP8.5 showed that large leatherbacks in West Papua were within 2.8°C of their presumed CTM and those in Gabon were within 4.6°C. Under scenario RCP8.5, all leatherbacks in Gabon and West Papua were above 33.6°C and leatherbacks in French Guiana were only slightly below 33.6°C.
While these results are concerning, they indicate that leatherbacks could possibly tolerate the projected warming even under ‘business as usual’ scenarios. An important caveat is that the longer a leatherback remains on land the more its temperature rises. Thus, in cases where nesting takes longer than our modeled 90 min, the leatherback will face an increased threat from rising global temperatures.

Adult leatherback thermal distress experiments are excessively difficult as well as unethical. Thus, the most appropriate tool for determining if leatherbacks will be in thermal distress may be advanced thermal models. Like Bostrom & Jones (2007) and Paladino et al. (1990), this study used simple models to examine the relationship between metabolic rate and temperature difference. Leatherbacks, however, have a much more complex shape than a cylinder or ellipsoid (i.e. lower volume to area ratio) and so have many more opportunities to dissipate heat. In addition, their ability to shed heat both through their soft skin and flippers (Greer et al. 1973, Spotila 2004) means they can likely maintain a lower thermal gradient than a basic model can calculate. This study used the calculated effective insulating layer thickness to account for this complexity. Future models should attempt to incorporate the leatherback’s complex morphology and physiology. In addition to advanced modeling, we suggest an increased focus on research of adult thermal tolerances through advanced trackers (measuring both acceleration and sub-carapace temperature) and increased efforts to sustain leatherbacks in captivity.

**Fig. 11. Dermochelys coriacea.** The posterior distributions for the average temperature (in parentheses under the x-axes) that exposed (i.e. not shaded) clutches will experience at present and in year 2100 under 2 different emission scenarios. The most credible values are the means of the distributions and the region above the black horizontal bar denoting the 95% HDI (highest density interval) contains 95% of the credible values.
Incubation thermal effects

Our analysis showed that while a scenario like RCP2.6 is of minimal concern, emissions scenario RCP8.5 is a threat in all 3 regions but particularly West Papua. Our results for shaded nests showed there are possible refuges from this increased heat. While the shaded credible seasonal average success values decrease from present values, a zero success value was not credible. However, while vegetation may provide shade refuges, it also may pose risks. For example, if the hatchlings emerge in dense vegetation they are unable to visually orient themselves toward the ocean (Kamel & Mrosovsky 2004).

The excavation and frenzy period is another point where elevated temperature may have deleterious effects. Increased nest temperatures can elevate hatchling temperatures and change sand properties, possibly forming a surface thermal barrier (J. Wyneken pers. comm.). With a CTM of 40.2°C and uncoordinated movement beginning at 33.6°C it is unsafe for hatchlings to emerge from the nest if the sand surface temperature is over 36°C (Drake & Spotila 2002). Under RCP8.5, exposed nests in West Papua on average will already be above the temperature that causes uncoordinated movement.

In addition to reduced hatchling success rates, skewed sex ratios are also a threat to leatherbacks as they are a temperature-dependant sex determination species. There are 5 studies in the literature that measured and report leatherback sex ratios under different temperatures. One study uses natural nests and records sand temperatures but does not report success (Godfrey & Barreto 1996). Thus, we cannot scale this data to correct for metabolic heating. Another study examined Malaysian clutches in incubators (Chan & Liew 1995). Each of these clutches produced only one sex, with 27.3°C being the hottest all male clutch and 28.4°C being the coolest all female clutch (which had a very small sample size of n = 5). Chevalier et al. (1999) conducted a maximum likelihood analysis with the data from the other 3 studies. For a Pacific population nesting in Costa Rica, 28.8°C and 30.0°C are the temperature cutoffs for 5 percent and 95 percent female hatchlings, respectively. For an Atlantic population nesting in French Guiana, 29.2°C and 29.8°C are the temperature cutoffs for 5 percent and 95 percent female hatchlings, respectively. For our simulations, all year 2100 scenario RCP8.5 exposed clutches were above 30.0°C, along with West Papua shaded clutches, and year 2100 scenario RCP2.6 Gabon exposed clutches. The only clutch in between the 2 different 95 percent female cutoffs was year 2100 scenario RCP8.5 Gabon shaded. We reiterate that our temperatures were the ground temperature at the location of the clutch (i.e. no egg metabolic heating) and that the metabolic heat of the clutch raises the temperature approximately 0.7°C (Patino-Martínez et al. 2012).

Despite the relative accessibility of nests compared to adults, questions remain about the aggregate effect of abiotic factors on the internal clutch temperature. Santidrián Tomillo et al. (2012) stastically examined the aggregate effect of precipitation and atmospheric temperature on hatching success in northwest Costa Rica. Although not directly comparable to our results, their projections showed similar decreases in hatching success under a global warming scenario analogue to RCP8.5. However, as most of these abiotic effects (e.g. evaporative cooling, conduction) are understood in isolation, numerical models may be able to sum the effects of a suite of abiotic factors and estimate the clutch temperatures under differing conditions.

CONCLUSIONS

We demonstrated that the incubation phase in the leatherback life cycle is the most vulnerable to temperature increases. Since the internesting steady state core temperatures were below the CTM the adults will not definitively diverge from the equatorial region; however, temperatures high enough to possibly induce uncoordinated movement may force them to leave some regions. The transient model showed that nesting leatherback core temperatures will not rise above the CTM, but will come dangerously close.

Managers and conservationists should investigate the possibilities of constructing shade devices out of local, biodegradable materials that will not disorient hatchlings and deploying them over nests on beaches. Patino-Martínez et al. (2012) have already used shading techniques to increase the percentage of males and overall hatching success. Also, managers may consider beginning public awareness campaigns in regions traditionally cooler than current nesting locations as leatherback nesting may shift to those regions in the future.

Acknowledgements. We thank the 3 anonymous reviewers whose thoughtful critique of our manuscript greatly improved its quality. We also thank Samantha Greene for writing and stylistic editing of this manuscript. An NSF EAGER grant number 1116343 to W.P.P. provided one sum-
mer of support to P.N.D. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

LITERATURE CITED

- Greer AE, Lazzell JD, Wright RM (1973) Anatomical evidence for a counter-current heat exchanger in the leatherback turtle (Dermochelys coriacea). Nature 244:181


Martinez S (2011) *Dermochelys coriacea*. IUCN Red List Threat Species


Vuuren DP, Elzen MGJ, Lucas PL, Eickhout B and others (2007) Stabilizing greenhouse gas concentrations at low

Appendix. Source information of the 9 internet images used to measure the ratio of leatherback body dimensions (see ‘Materials and methods: biophysical/physiological model’ and Fig. 2). All images were accessed on 17 June 2013

<table>
<thead>
<tr>
<th>Photo credit</th>
<th>Photo title, legend or page title</th>
<th>Host homepage title</th>
<th>Photo url</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Park Service (2010)</td>
<td>Leatherback turtle (Dermochelys coriacea)</td>
<td>National Park Service</td>
<td><a href="http://www.nature.nps.gov/biology/migratoryspecies/images/exLeatherback.jpg">www.nature.nps.gov/biology/migratoryspecies/images/exLeatherback.jpg</a></td>
</tr>
<tr>
<td>National Park Service (2013)</td>
<td>Virgin Islands National Park: photo gallery, sea turtles</td>
<td>National Park Service</td>
<td><a href="http://www.nps.gov/common/uploads/photogallery/akr/park/viis/2D4053B6-1DD8-B71C-07F4200EBB12FB0D/2D4053B6-1DD8-B71C-07F4200EBB12FB0D-large.jpg">www.nps.gov/common/uploads/photogallery/akr/park/viis/2D4053B6-1DD8-B71C-07F4200EBB12FB0D/2D4053B6-1DD8-B71C-07F4200EBB12FB0D-large.jpg</a></td>
</tr>
<tr>
<td>Rahim S (date unknown)</td>
<td>#2249229-leatherback</td>
<td>Fotolia</td>
<td><a href="http://us.fotolia.com/id/2249229">http://us.fotolia.com/id/2249229</a></td>
</tr>
</tbody>
</table>