Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors

KATE H. MACNEALE,* † BARBARA L. PECKARSKY* AND GENE E. LIKENS †
*Department of Entomology, Cornell University, Ithaca, NY, U.S.A.
†Institute of Ecosystem Studies, Millbrook, NY, U.S.A.

SUMMARY
1. Populations in different locations can exchange individuals depending on the distribution and connectivity of suitable habitat, and the dispersal capabilities and behaviour of the organisms. We used an isotopic tracer, 15N, to label stoneflies (Leuctra ferruginea) to determine the extent of adult flight along stream corridors and between streams where their larvae live.
2. In four mass, mark-capture experiments we added 15NH4Cl continuously for several weeks to label specific regions of streams within the Hubbard Brook Experimental Forest, NH, U.S.A. We collected adult stoneflies along the labelled streams (up to 1.5 km of stream length), on transects through the forest away from labelled sections (up to 500 m), and along an 800-m reach of adjacent tributary that flows into a labelled stream.
3. Of 966 individual adult stoneflies collected and analysed for 15N, 20% were labelled. Most labelled stoneflies were captured along stream corridors and had flown upstream a mean distance of 211 m; the net movement of the population (upstream + downstream) estimated from the midpoint of the labelled sections was 126 m upstream. The furthest male and female travelled approximately 730 m and approximately 663 m upstream, respectively. We also captured labelled mature females along an unlabelled tributary and along a forest transect 500 m from the labelled stream, thus demonstrating cross-watershed dispersal.
4. We conclude that the adjacent forest was not a barrier to dispersal between catchments, and adult dispersal linked stonefly populations among streams across a landscape within one generation. Our data on the extent of adult dispersal provide a basis for a conceptual model identifying the boundaries of these populations, whose larvae are restricted to stream channels, and whose females must return to streams to oviposit.

Keywords: Hubbard Brook Experimental Forest, insect flight, mark–recapture, 15N, Plecoptera

Introduction
Dispersal of individuals away from their natal or breeding habitat can affect populations at many spatial and temporal scales (Gadgil, 1971; Pearman & Wilbur, 1990; Gaines & Bertness, 1993; Palmer, Allan & Butman, 1996; Hanski, 2001). Parameters affected include the demographics of natal populations, population dynamics in neighbouring habitats (Hanski, 2001), colonisation patterns of novel or disturbed habitats (Palmer et al., 1996), and the rates at which populations become genetically distinct (Schmidt, Hughes & Bunn, 1995; Bunn & Hughes, 1997; Hughes et al., 1998; Peterson & Denno, 1998; Wilcock, Hildrew & Nichols, 2001). The temporal and spatial scales of these effects will depend on the traits of the organisms and the distribution of their habitats (e.g. Butman, 1987; Peckarsky, Taylor & Caudill, 2000; McLellan & Hovey, 2001), but some general patterns
emerge. For example, dispersal that affects local population dynamics is more frequent and from a shorter distance than dispersal required for maintaining gene flow among distant populations (Bohonak, 1999). Thus, the frequency, distances and directions of dispersal need to be known to estimate the boundaries of populations and to predict the effects of dispersal on natal and surrounding populations.

When organisms are restricted to discrete habitat patches, population boundaries are often restricted by the habitat itself (e.g. ponds). In such cases, dispersal influences not only the growth rates of local populations, but also the dynamics of the entire metapopulation (Hanski, 2001). However, many populations exist in more continuous habitats that are physically connected but distributed linearly or in a branched pattern, such as along forest edges, streams, or roadsides. In these cases, it is more challenging to define discrete boundaries of local populations.

Population boundaries and the consequences of dispersal among connected habitats will depend on the pattern of the available habitat and the permeability or resistance of the surrounding areas (the matrix) to dispersal (Delettre & Morvan, 2000; Ricketts, 2001). While genetic isolation and distance among populations are often positively correlated (Bohonak, 1999), relationships may be more complex among interconnected habitats (Michels et al., 2001). For example, when habitats are connected but highly branched, dispersal may be restricted to those pathways along connected habitats, or individuals may disperse through permeable surrounding areas (Fraser et al., 1999; Sieving, Willson & De Santo, 2000; Bilton, Freeland & Okamura, 2001).

Streams are good examples of networks of connected aquatic habitats. Whether a network of stream habitats links or separates populations of aquatic organisms depends on the pattern of the network and on the dispersal behaviours of the organisms (Fisher, 1997; Hughes et al., 1999, 2000; Wilcock et al., 2001). The branching, hierarchical pattern along with the unidirectional flow of streams all may isolate populations in headwaters or integrate populations among different sections of streams connected by flow (Fisher, 1997; Speirs & Gurney, 2001). Certainly, for life stages or organisms restricted to stream channels, stream connectivity (distance along streams) is more relevant for predicting population boundaries than is the direct distance between streams. The degree to which stream connectivity defines population boundaries is less clear for organisms with complex life cycles that include a terrestrial adult stage.

Despite indirect evidence from patterns of gene flow that dispersal of stream invertebrates across watersheds may be frequent (Jackson & Resh, 1992; Schmidt et al., 1995; Bunn & Hughes, 1997; Hughes et al., 1999; Bilton et al., 2001; Kelly, Bilton & Rundle, 2001), most direct measurements of dispersal of stream invertebrates have been made within and along streams (Hershey et al., 1993; Williams & Williams, 1993; Winterbourn & Crowe, 2001, but see Briers et al., 2004). This linear perspective may be reasonable for taxa with aquatic stages restricted to the stream and/or with adults that stay nearby; and movement along streams and riparian areas may be most important for predicting population dynamics at the within-stream scale. Furthermore, the potentially high cost of dispersal across watersheds (Rankin & Bursttled, 1992; Bilton et al., 2001) may select for dispersal along streams rather than random flight. Nonetheless, the extent of rare, cross-watershed flight by adults of aquatic insects (e.g. Griffith, Barrows & Perry, 1998; Petersen et al., 1999a; Briers et al., 2004) must be understood to ascertain larger-scale population boundaries and dispersal (see O’Neill, 2001).

We present two conceptual models as alternative hypotheses to predict how dispersal of terrestrial adults may affect boundaries of populations of organisms with aquatic larvae (e.g. some insects and amphibians). If the movement of adults was restricted to the stream channel or a narrow riparian zone, the distribution of adults would overlap with the stream or stream network, depending on the extent of dispersal (Fig. 1a,b). In contrast, if adult dispersal was random, the distribution of adults would not correspond with the structure of the stream or stream network (Fig. 1c,d).

We used direct measurements of adult dispersal to differentiate dispersal within and between local populations, thereby identifying population boundaries. We used distances travelled by the majority of individuals in any generation to define within-population movements, and distances travelled by a few long-distance dispersers to define movement among local populations. We also suggest that population boundaries of stream insects are not fixed, but instead may fluctuate depending on the sites from which individuals emerge as adults within the stream network.
In this study, we used 15N as a tracer to identify the dispersal patterns of individual adult *Leuctra ferrugi-nea* (Walker), stoneflies whose larvae live in streams. This method enabled us to mark hundreds of thousands of dispersing individuals, thereby increasing the probability of capture and the precision of estimates of movement at a catchment scale (Macneale, Peckarsky & Likens, 2004). Our aim was to determine the distances and directions that individuals flew along streams and the frequency and potential pathways by which individuals colonised adjacent streams. We used our data to distinguish among the hypothetical patterns of population boundaries illustrated in Fig. 1.

Methods

Study system

We examined adult dispersal of *L. ferruginea* (Plecoptera; Leuctridae), within the Hubbard Brook Experimental Forest (HBEF), NH, U.S.A. (latitude $43^\circ 56'\ N$, longitude $71^\circ 45'\ W$; Fig. 2), a forest comprised of 30 to 40-m tall canopy trees (Likens & Bormann, 1995), and smaller streamside shrubs. Aquatic larvae live for about 10 months and feed on detritus in the HBEF streams. Larval density is highest in small headwater streams (Hall, Likens & Malcom, 2001), and dispersal via downstream drift is very low in the summer months (mean \pm SE = 2.4 \pm 0.9 individuals (100 m)$^{-3}$, Macneale, 2003). Adults emerge in mid-July until late August in equal numbers, and live 4–8 weeks (Macneale, 2003). Females must feed on terrestrial vegetation to develop eggs and return to streams to oviposit; males feed as well but their increase in biomass as adults is less than that of females (Harper, 1973; Macneale, Likens & Peckarsky, 2002). Although these small stoneflies (female forewing length approximately 7 mm) have been described as ‘clumsy’ fliers (Hynes, 1976; Harper, 1989), they are often to be seen flying slowly many metres in one bout and are found very rarely crawling on the ground or stream bank after shedding their final larval exuviae (K.H. Macneale, personal observation).

Marking stoneflies using 15N additions

Marking the hundreds of thousands of stoneflies necessary to have a reasonable likelihood of capturing a representative group to measure dispersal directly was not trivial. To do so we added a 15NH$_4$Cl (10% 15N) solution to three streams in HBEF (Fig. 2) over 4 years to isotopically enrich (label) the detrital food resources of stonefly larvae and ultimately the adults emerging from these streams. Details of the 15N additions are given in Macneale (2003) and Macneale et al. (2004) but are briefly summarised here.

Although background concentrations of dissolved inorganic nitrogen (DIN) in these first and second order streams were low when experiments were conducted each summer ($<5\ \mu g\ L^{-1}\ \text{NH}_4\text{-N}$, 2–300 $\mu g\ L^{-1}\ \text{NO}_3\text{-N}$; Bernhardt, Hall & Likens, 2002), tracer-level additions resulted in no increase in nutrient concentrations (E.S. Bernhardt & K.H. Macneale, unpublished data). We used a peristaltic pump to drip the 15NH$_4$Cl solution continuously for 4–8 weeks at one point on each stream where mixing was thorough (Fig. 2). Additions were timed so that the microbial community colonising the detrital food resources was highly enriched during at least the last
month of larval growth (i.e. spanning mid-June until late August). At Bear Brook in 1997 and 1998, 15NH$_4$Cl was dripped at a constant rate regardless of stream discharge. In Cascade Brook (1999) and Zig Zag Brook (2000), however, the rate of addition was adjusted daily according to discharge to standardise concentrations. The long duration and high target enrichment levels (500–1500\% enrichment of stream water NH$_4$, see Macneale et al., 2004) of these additions ensured sufficient labelling of the detrital microbial community and these detritus-feeding aquatic insects.

To assess the degree (δ^{15}N of individual stoneflies) and spatial extent (metre of stream) of the enrichment, we analysed individual L. ferruginea emerging from up to 11 sites downstream of each addition throughout the entire L. ferruginea flight period (Fig. 3). The base of emergence traps rested on the stream substratum (but did not restrict movement of benthic larvae), and provided substratum on which emerging individuals crawled out and emerged (each sampled approximately 0.12 m2). Live, freshly emerged adults were collected every 1–3 days from traps. We compared the δ^{15}N values of potentially labelled individuals to reference (non-labelled) L. ferruginea emerging at least 25 m upstream of the 15N addition point. Reference individuals included both males and females, because δ^{15}N values did not differ by sex ($\chi^2 = 0.91$, d.f. = 1, $P = 0.34$). A stonefly was considered labelled when its δ^{15}N value was greater than a conservative threshold defined as 2 SD above the mean reference value (Macneale, 2003). For example, the mean δ^{15}N value for reference individuals from Zig Zag Brook and West Zig Zag Brook was 3.02\%15N, and the conservative threshold (±2SD) was 4.25\%15N above which we considered individuals from those streams to be labelled (Macneale, 2003; Macneale et al., 2004).

However, although a female emerging with a δ^{15}N value of 4.5\%15N may have been enriched relative to non-labelled individuals, she did not retain a sufficient amount of that 15N after feeding as an adult to be detected as labelled. Because of feeding extensively on terrestrial foods, unlabelled females depleted their δ^{15}N values by approximately 2\%15N, by the time oviposition began (Macneale, 2003). Using a mixing model to determine the depletion of δ^{15}N in labelled females (McCutchan & Lewis, 2002, their equation 4 used for 15N), we estimated that females emerging with δ^{15}N $<$ 7\%15N would effectively ‘lose’ their label before returning to the stream (Macneale, 2003). Accordingly, we adjusted the threshold for determining whether mature females were labelled to account for...
adult feeding (included only those that had emerged with δ^{15}N $> 7\%_o$ Macneale, 2003). This approach insured that the threshold for determining whether individuals were labelled was highly conservative for all streams. Individual stoneflies were frozen, de-gutted if guts contained food (appeared dark through the body wall), dried (oven dried for 24 h at 55 $^\circ$C, or freeze dried for 24 h), pulverised, packed in aluminium tins, and weighed. Individuals were analysed using a Europa Scientific Geo 20/20 at the Cornell Laboratory for Stable Isotope Analysis, or a Europa Scientific Hydra 20/20 at the Stable Isotope Facility at the University of California, Davis, CA, U.S.A.; blind standards analysed with each set of samples at each lab showed that δ^{15}N precision was consistently within $\pm0.2\%_o$.

Capturing marked stoneflies

In all years and streams we collected dispersing adults from 500–600 m upstream to 1000 m downstream of each addition site to assess within catchment dispersal, and in 1998 and 2000 along transects through the forest perpendicular to the labelled sections of Bear Brook and Zig Zag Brook to assess potential cross-watershed dispersal. Also in 2000, adults were caught along West Zig Zag Brook starting at the confluence of West Zig Zag and Zig Zag Brooks and extending 800 m upstream (see Fig. 4) to assess if individuals travelled into adjacent catchments. Adults were collected throughout the flight periods by hand while they were resting on vegetation and non-sticky traps, with a sweep net while they were flying, or on hanging or floating sticky traps (Macneale, 2003; Macneale et al., 2004). We recorded the capture point along the stream (metre from label-addition point) for each individual collected by hand and sweep net, and in traps of all types that were spaced every 50 m along the streams. Resting stoneflies were collected by hand from non-sticky fibreglass screens (1×1 m), suspended approximately 1.5 m above the stream channel, one to three times per day along Bear Brook in 1997 (see Macneale et al., 2004). On Zig Zag Brook, West Zig Zag Brook and Cascade Brook, we collected individuals every 2–3 days from hanging sticky traps made of 35×35 cm fibreglass screen, thinly coated

Fig. 3 Mean (±SE) δ^{15}N values ($\%_o$) of stoneflies at the sites where they emerged (distance downstream) for each 15N addition. Arrows indicate the effective endpoints of the labelled sections (see Macneale, 2003 for details). (a) Bear Brook 1997, $n_{total} = 71$. (b) Bear Brook 1998, $n_{total} = 87$. (c) Cascade Brook 1999, $n_{total} = 66$. (d) Zig Zag Brook 2000, $n_{total} = 95$.

© 2005 Blackwell Publishing Ltd, *Freshwater Biology*, 50, 1117–1130
with Tangle-trap™ (The Tanglefoot Company, Grand Rapids, MI, U.S.A.) and suspended approximately 1.5 m above the stream channel or ground. Floating traps were 22 × 28 × 0.6 cm plexiglass sheets with bubble wrap or foam affixed to the bottom, and sheets of acetate on top. Tangle-trap™ was applied to each sheet, and every 2 days we removed a sheet for collection and exposed a clean sticky sheet. In the laboratory, we applied small drops of a citrus-based solvent (GooGone™, Magic American Corporation, Cleveland, OH, U.S.A.) to the acetate sheets to help remove insects. All individuals used for isotope analyses were stored frozen until processed. Head capsule width and forewing length were measured for all individuals using an ocular micrometer (precision: head capsule width: ±0.02 mm; forewing length: ±0.08 mm).

Analysis of dispersal patterns

We collected and analysed males, immature females (those without fully developed eggs), and mature females (those with fully developed eggs); but we focused our analyses on mature females returning to the stream to oviposit, because their movement is most relevant to the recruitment of the next generation. Mature females were often captured with extruded egg masses still attached to their abdomens, indicating they were within minutes of ovipositing.

For each labelled individual collected, we estimated the minimum linear distance it had travelled to the location where it was caught (known precisely) from its estimated site of emergence. We assumed conservatively that labelled stoneflies emerged from the midpoint of the labelled section of stream, which was halfway between the upper-most site where labelled reference individuals had emerged (upstream endpoint) and the downstream endpoint where the mean δ¹⁵N value of emerging reference stoneflies was above the threshold (approximately 7‰, vertical arrows in Fig. 3). While the use of the midpoint to estimate flight distances has the potential to introduce error in estimates of flight distance, it does not systematically bias our estimates of relative flight direction, because

Fig. 4 Dispersal of mature females from Zig Zag Brook. (a) Percentage of mature females that were caught labelled along West Zig Zag Brook (WZ). (b) Total number of mature females caught along the transect between Zig Zag (ZZ) and West Zig Zag Brooks. The circles around values indicate sites where a total of three labelled females was caught (one at 200 m, and two at 50 m from West Zig Zag Brook).
the same error would presumably apply to movements upstream or downstream. From these data we estimated minimum distances flown by individuals, but did not make assumptions about flight paths or actual distances flown (see Discussion for possibilities). Finally, we estimated the total number of labelled individuals that emerged during each experiment by multiplying the estimated area of labelled stream (m²) by the average number of stoneflies caught in emergence traps (m⁻²).

Results

Extent of ¹⁵N label in stream sections as indicated by emerging stoneflies

Addition of ¹⁵N effectively labelled from about 20 000 (Cascade Brook 1999) to 250 000 (Bear Brook 1998) stoneflies emerging from sections of each stream ranging in length from 40 m (Cascade Brook 1999) to 400 m (Bear Brook 1997) (Fig. 3). The δ¹⁵N values of stoneflies emerging from the same distance downstream of ¹⁵N-additions also varied among streams and within the same stream (Bear Brook) between years (compare y-axes in Fig. 3). Much of this variation among streams and years could be attributed to the variation in stream discharge (Bear 1997 > Bear 1998 > Zig Zag 2000 > Cascade 1999; mean daily discharge of Bear 1997 during enrichment was four times that of Cascade 1999), and discharge was the best predictor of uptake lengths of DIN in streams throughout the HBEF and elsewhere in the United States (Peterson et al., 2001; Bernhardt et al., 2002). Variation in δ¹⁵N values of individuals emerging from the same location in any one stream (error bars in Fig. 3) was probably a function of variation in the extent of individual feeding and local variation in the extent of labelling (Macneale et al., 2004). The observed range of decay distances of δ¹⁵N values was consistent with estimates of DIN uptake in streams within the HBEF (Bernhardt et al., 2002), and the pattern of decay of δ¹⁵N values with distance from the addition sites was broadly consistent over years and streams (Fig. 3).

Distance and direction of adult dispersal along streams

Capture rate of labelled stoneflies was quite high: of all stoneflies caught flying and analysed from sites along streams during the four experiments, 20% were labelled (N_total_analysed = 966, N_total_labelled = 190). The percentages of individuals that were caught and were labelled upstream, within, and downstream of labelled reaches were 21, 35, and 9%, respectively (N_total_analysed = 446, 190, and 330, respectively). Strikingly, 76% of those labelled individuals had travelled upstream from their estimated sites of emergence (Fig. 5). This pattern was observed in all streams and all years (Macneale, 2003; Macneale et al., 2004). The estimated mean absolute distances travelled by adult stoneflies ranged from 157 m (mature females – Cascade 1999) to 355 m (mature females – Bear 1997), but were remarkably similar among streams (Macneale et al., 2004), and did not differ significantly by sex or state of maturation (F = 0.59, d.f. = 2, 187, P = 0.55). There was no correlation between body size (head capsule width or forewing length) and distance dispersed.

Lateral and cross-watershed dispersal

Analysis of 205 mature females captured along West Zig Zag Brook showed that 15 were labelled, and
therefore had dispersed at least 500 m west from Zig Zag Brook (Fig. 4a). Those labelled individuals were caught between 50- and 800-m upstream of the confluence of the two tributaries (Fig. 2); but surprisingly, no labelled individuals were caught between 250- and 400-m upstream of the confluence, despite equal sampling effort throughout the reach (Fig. 4a). Three labelled mature females were also captured along the transect through the forest between the two tributaries; and interestingly, two of those were caught closer to West Zig Zag Brook than to the stream from which they had emerged (Fig. 4b).

For each of the 15 labelled individuals captured along West Zig Zag Brook, we used estimated emergence sites and the sites of capture to estimate dispersal distances via two potential pathways: along the stream channel or directly through the forest. In all cases the distances that females would have dispersed along the stream corridor (637–1387 m, down Zig Zag and up West Zig Zag Brooks) were greater than distances between Zig Zag and West Zig Zag Brooks through the forest (560–640 m). Also, all estimated distances through the forest were within the range of those measured for upstream movement (Fig. 5). Furthermore, if females were to have moved along the stream corridor from Zig Zag to West Zig Zag Brook, distances for 13 of the 15 females would have exceeded the maximum distance (663 m) estimated for any female moving upstream. These data, combined with our observation that few females flew more than 200 m downstream, suggest that females flew from one branch of Zig Zag Brook to the other through the forest (Fig. 4).

Nevertheless, in the 2 years we sampled along lateral transects between streams as well as stream corridors, most adult stoneflies were caught near the streams. While catches along the entire Zig Zag transect indicate that the distribution of females may be patchy within the forest (Fig. 4b), most mature females were caught <50 m from the stream channel. In 1998, the numbers of males, immature females, and mature females caught on lateral transects west of Bear Brook dropped dramatically >50 m from the stream channel (Fig. 6). Similarly in 2000, for every mature female caught on traps hanging 50 m west of Zig Zag Brook, there were 33 females caught directly above the stream with the same trap effort. Interestingly, the greatest number of stoneflies caught in the forest (35 mature females) was at the approximate midpoint of the transect, 200 m from West Zig Zag Brook (Fig. 4b), in a flat, wet region that may attract adult stoneflies.

However, most stoneflies caught on lateral transects were not labelled, and thus had not emerged from nearby labelled stream sections (Figs 4a & 6). For all adults caught at least 20 m from the stream channel during all years, more than 75% had flown to those traps from some unlabelled stream reach, either up- or downstream, or from an adjacent stream. Furthermore, very few males or immature...
adult females were caught on lateral traps during either year (e.g. Fig. 6). No males were caught on the lateral transect at Zig Zag Brook (2000), and no males were caught >100 m from Bear Brook in 1998 (Fig. 6). Therefore, most of the adult stoneflies captured in the forest were mature females that had emerged >100 m from the traps. Furthermore, the low percentage of labelled males and immature females caught far from the stream channel indicates that they also had dispersed significant distances before being captured.

Discussion

Data from four separate 15N additions in three different streams in the HBEF demonstrated convincingly that adult L. ferruginea with relatively immobile aquatic larvae dispersed predominantly upstream from where they emerged as adults. As has been observed for European Leuctra spp. (Kuusela & Huusko, 1996; Griffith et al., 1998; Petersen et al., 1999a, 2004), most adult stoneflies were captured along streams, with few travelling farther than 50 m inland from the stream edge. Surprisingly, some mature females dispersed from their natal stream and were captured along an adjacent stream. The directions and distances travelled were sufficient to enable dispersal across watersheds. Although individuals could have dispersed to the other watershed by flying downstream and then upstream along the stream corridor, that alternative route would cover distances and directions inconsistent with the known flight patterns of this species. These findings provide valuable insights about the dispersal, distribution and persistence of populations of stream insects on a landscape scale.

Distributions of individuals: implications for population boundaries

The stable isotope additions enabled us to distinguish among the hypothetical models of population boundaries presented in Fig. 1. First, the predominance and distribution of individuals captured along stream channels suggest that mature females use the stream channel as a corridor (as in Fig. 1a,b), but do not disperse equally in both up- and downstream directions. Second, the capture of a few labelled mature females on the forest transect between the two branches of Zig Zag Brook suggests that individuals can fly up to 600 m between streams through the forest. Third, the distribution of labelled females caught on the unlabelled branch of Zig Zag Brook also suggests that stoneflies had flown the shorter distance through the forest rather than the longer distances along a stream corridor (i.e. downstream along Zig Zag Brook and then back upstream West Zig Zag Brook). Therefore, we propose a conceptual model including: (i) upstream flight along the natal stream, (ii) minimal downstream flight along the natal stream, and (iii) cross-watershed dispersal to an adjacent stream (Fig. 7).

The pattern of the stream network and the distances among streams may, therefore, be as important as the connectivity of the network in predicting the degree to which L. ferruginea populations are isolated from one another in headwater streams. If streams in adjacent catchments were within the limits of the dispersal distances of mature females, then flying through the forest rather than along streams would be more direct, thereby reducing the potential energetic cost and risk of predation during dispersal. Therefore, the boundaries of the relatively narrow stream corridor and its position within a catchment, rather than the boundaries of the catchment itself, may influence the
population boundaries of these stoneflies (see O’Neill, 2001).

The observed exchange of individuals between streams at a landscape scale in our study indicates that populations of stoneflies in different catchments were not isolated from one another. The maximum dispersal distances and high proportions of unlabelled stoneflies caught near the labelled stream sections indicate that significant dispersal by males or females away from their sites of emergence could occur before or after mating. Also, a small percentage of males and immature females could fly far enough to mate with individuals that emerged from other streams, and potentially populations in the uppermost reaches could exchange individuals with populations across ridges. The mean distance between the uppermost reach of Zig Zag Brook and the three nearest streams outside the Hubbard Brook Valley is 1.8 km, which is more than double the farthest dispersal distance measured in this study. Given the low probability of capturing the farthest flying individuals, we speculate that individuals crawl upstream, it suggests that few if any crawl that far. Regarding potential drift during summer, the similarity in shapes of the decay curves of 15N-uptake by detritus (Fig. 8) and of attached (sedentary) periphyton (J. Merriam, unpublished data) suggests that detritus transport downstream was minimal in Bear Brook (1997), despite one spate during which stream flows were as high as approximately 450 L s$^{-1}$. The relatively smooth decay of 15N-label with distance for most streams (Fig. 3), and similar slopes in the decay of 15N in detritus and emerging $L. ferruginea$ (Fig. 8) are consistent with the hypothesis that larvae did not drift at high frequencies or over great distances during their last 2 months of development. High frequencies of $L. ferruginea$ drifting into or out of the labelled section would have resulted in more

Indirect evidence of low drift and upstream crawling rates

The predictable decline of individual δ^{15}N values with distance from the addition points (Fig. 3) is attributed to the uptake dynamics of DIN but also reflects the relative sedentary behaviour of the larvae. First, no individual emerging >25 m upstream of any of the addition sites was enriched relative to individuals emerging from unlabelled streams. While this observation does not preclude the possibility that individuals crawl upstream, it suggests that few if any crawl that far. Regarding potential drift during summer, the similarity in shapes of the decay curves of 15N-uptake by detritus (Fig. 8) and of attached (sedentary) periphyton (J. Merriam, unpublished data) suggests that detritus transport downstream was minimal in Bear Brook (1997), despite one spate during which stream flows were as high as approximately 450 L s$^{-1}$. The relatively smooth decay of 15N-label with distance for most streams (Fig. 3), and similar slopes in the decay of 15N in detritus and emerging $L. ferruginea$ (Fig. 8) are consistent with the hypothesis that larvae did not drift at high frequencies or over great distances during their last 2 months of development. High frequencies of $L. ferruginea$ drifting into or out of the labelled section would have resulted in more
variation in the δ^{15}N values at each site and throughout the length of the stream. These patterns corroborate measured drift densities in these streams (Macneale, 2003).

Why do adults disperse upstream?

The consistent pattern of upstream flight across streams and years indicates that individuals were either passively transported or actively flew upstream. It is unlikely that prevailing wind determined the flight direction, because we observed upstream flight in three catchments that varied in their orientation by 180° (Fig. 2). In addition, individuals were observed flying with and against slight breezes (<5 km h$^{-1}$) throughout the day (from 07:00 to 19:00 hours). Therefore, diurnal patterns of airflow would not explain observed dispersal patterns. From our direct observations and the data presented here, we argue that individuals actively flew upstream. In more disturbed areas with fragmented forest canopies, wind may be more important in determining dispersal distances and directions (see Briers et al., 2004).

Interestingly, upstream flight and oviposition by fecund females of species with little downstream drift as larvae (Saltveit, Haug & Brittain, 2001; Siler, Wallace & Eggert, 2001) could result in individuals accumulating in the upstream reaches, suggesting that our relatively stable headwater stream populations (Macneale, 2003) may be regulated by density dependent factors (Anholt, 1995; Travis, Murrell & Dytham, 1999; Kerans, Chesson & Stein, 2000; Kopp, Jeschke & Gabriel, 2001; Hildrew et al., 2004; but see Humphries, 2002). We speculate that upstream oviposition is adaptive, because those reaches are predictably of higher quality (e.g. lower interspecific competition, lower predation risk, or better abiotic conditions), as has been suggested for other taxa (Pearson & Kramer, 1972; Waters, 1972; Muller, 1982; Anholt, 1995; Peckarsky et al., 2000).

Other evidence is consistent with the hypothesis that conditions in headwater streams favour better larval performance of these stoneflies. In HBEF streams the production to biomass ratio of Leuctra spp. in the second order Bear Brook was 10.3 year$^{-1}$ compared with 7.6 year$^{-1}$ in the fifth order Hubbard Brook (Hall et al., 2001), indicating that upstream reaches are more productive. Both shredder density and detritus biomass were greater in the headwater stream than in Hubbard Brook (Hall et al., 2001), and the ratio of shredders to available leaf litter was lower in the headwater stream (Hall et al., 2001). The predator–prey ratio was also lower in Bear Brook than in Hubbard Brook (Hall et al., 2001; D. Warren, personal communication), suggesting the potential that per capita predation risk may be lower in the headwater stream. In addition, higher spring temperatures in headwater streams may increase growth rates of L. ferruginea (Macneale, 2003). Although the pH of HBEF streams increases with stream order (G.E. Likens & D.C. Buso, unpublished data), acidity does not appear to limit the distribution of Leuctra spp., which are abundant in HBEF streams with pH as low as 4.5 (Macneale, 2003). Thus, both biotic and abiotic conditions in the headwaters may favour better larval performance of these acid-tolerant stoneflies.

Our finding of a consistent pattern of upstream flight contrasts with the results of previous studies using interception traps (i.e. sticky traps, Malaise traps and window traps), which have suggested that downstream flight is as common as upstream flight in some related stonefly species (Jones & Resh, 1988; Williams & Williams, 1993; Petersen et al., 1999b; but see Zwick, 1990). By using a 15N-label, we demonstrated definitively that the ultimate direction of dispersal was independent of the side of an interception trap on which stoneflies were captured, suggesting that conclusions about flight directions based on interception trap data without knowledge of the origin of individuals should be re-evaluated (Macneale et al., 2004).

In conclusion, we propose that the dispersal patterns of adult L. ferruginea in the HBEF result in population boundaries that are not discrete, but instead are continuous among emergence sites and therefore along stream corridors (Fig. 7). Thus, boundaries of these populations may be influenced not only by environmental constraints affecting the distribution and quality of the aquatic habitat, but also by behavioural constraints of dispersing adults (the tendency of gravid females to fly upstream). Finally, although populations of taxa with at least one life stage restricted to a specific habitat may be concentrated within that habitat, local populations may also span the matrix between habitats (Fig. 7).

We assert that the distance and direction of adult stonefly dispersal is relevant to local population dynamics at the scale of single streams, and to persistence of populations at the landscape scale.
Most individuals at HBEF did not disperse away from their natal stream, but oviposited in stream sections upstream from their emergence sites. Cross-watershed dispersal on the scale of hundreds of metres may not be sufficiently frequent to affect population dynamics in adjacent streams, but could maintain gene flow among nearby streams. More studies, especially genetic studies paired with direct estimates of dispersal, are needed at the landscape scale to define the extent and nature of dispersal of populations of stream insects whose larvae live only within streams, but whose adults move throughout the adjacent landscape.

Acknowledgments

We thank Adam Welman, Jason Demers, Andrea Encalada, Ian Halm, Emily Bernhardt, Chris Caudill, Betsy Elkinton, Mila Paul, Donald Buso, and especially Jess Tabolt for their assistance. Jimmy McCutchan, Joe von Fischer, and Steve Perakis were very helpful regarding isotope analyses. A special thanks goes to Bob Hall, Jen Tank, Jeff Merriam and the 1997 Bear Brook LINX crew. Suggestions from A.G. Hildrew, R.F. Denno and several anonymous reviewers greatly improved this manuscript. Funding was provided by The Andrew W. Mellon Foundation to G.E. Likens, and by NSF to B.L. Peckarsky, K.H. Macneale and G.E. Likens (DEB 01–04297). The Hubbard Brook Experimental Forest is operated and maintained by the USDA Forest Service, Newtown Square, PA. This paper is a contribution to the Hubbard Brook Ecosystem Study and to the programme of the Institute of Ecosystem Studies. This publication does not reflect the view of any sponsoring agency.

References

(Manuscript accepted 30 March 2005)